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Semi-LDPC Convolutional Codes: Construction
and Low-Latency Windowed List Decoding

Qianfan Wang, Suihua Cai, Li Chen, Xiao Ma

Abstract—This paper presents a new coding scheme
called semi-low-density parity-check convolutional
code (semi-LDPC-CC), whose parity-check matrix con-
sists of both sparse and dense sub-matrices, a feature
distinguished from the conventional LDPC-CCs. We
propose sliding-window list (SWL) decoding algorithms
with a fixed window size of two, resulting in a low
decoding latency but a competitive error-correcting per-
formance. The performance can be predicted by upper
bounds derived from the first event error probability and
by genie-aided (GA) lower bounds estimated from the
underlying LDPC block codes (LDPC-BCs), while the
complexity can be reduced by truncating the list with a
threshold on the difference between the soft metrics in the
serial decoding implementation. Numerical results are
presented to validate our analysis and demonstrate the
performance advantage of the semi-LDPC-CCs over the
conventional LDPC-CCs.

Keywords—low-density parity-check convolutional
codes (LDPC-CCs), spatially coupled LDPC (SC-LDPC)
codes, sliding-window list (SWL) decoding

I. INTRODUCTION

Low-density parity-check convolutional codes (LDPC-
CCs), also known as spatially coupled LDPC (SC-LDPC)
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codes, were first introduced in Ref. [1], where the parity-
check matrix of the LDPC-CC is constructed from the parity-
check matrix of the LDPC block code (LDPC-BC) by a
matrix-based unwrapping procedure. In Ref. [2], the construc-
tion exploits similarities between quasi-cyclic block codes
and time-invariant convolutional codes. These aforemen-
tioned two constructions were shown to be tightly con-
nected via (proto)graph-cover construction in Ref. [3] and
the protograph-based construction was subsequently investi-
gated in Ref. [4], in which L disjoint, or uncoupled LDPC-
BCs of length n are coupled into a single chain. Recently,
several constructions of the LDPC-CCs have been proposed,
e.g., a systematic protograph-based construction with a girth
of eight[5], the replicate-and-mask construction with improved
performance[6], and a “hardware-reusable” construction via
partial superposition[7].

As a result of these careful constructions, there are several
remarkable features of LDPC-CCs. One remarkable feature
is that the LDPC-CCs have asymptotically capacity-achieving
performance over binary memoryless symmetric (BMS) chan-
nels under the iterative belief propagation (BP) decoding[8].
This is due to the threshold saturation, discovered numer-
ically in Ref. [9] and established analytically in Ref. [10],
where the BP decoding performance of LDPC-CCs can ap-
proach the maximum a posteriori (MAP) decoding perfor-
mance of the underlying LDPC-BCs. However, to obtain the
promised good error-correcting performance, one needs suf-
ficiently large length n and coupling length L[11]. This in
turn leads to a large decoding latency. Another remarkable
feature is that the LDPC-CCs can be decoded by a sliding-
window (SW) decoder[9,11], in which the trade-off between the
error-correcting performance and the decoding latency can be
achieved with a tunable window size. In this case, to obtain
good error-correcting performance, a sufficiently large win-
dow size is usually required. In Ref. [11], the authors proved
that the window thresholds can approach the BP thresholds if
the window size d exceeds some designated window size dmin.
This has been experimentally verified in Ref. [12] that near
optimal performance can be maintained in the high signal-to-
noise ratio (SNR) region as long as d > 6(m+1), where m is
the coupling width, also referred to as encoding memory. This
large window size usually implies a large decoding latency.

In some scenarios, such as the ultra-reliable and low-
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latency communication (URLLC) scenario of 5G, both la-
tency and reliability are the key performance indicators to sup-
port new real-time applications, like virtual reality and tactile
Internet[13]. In particular, the authors in Ref. [13] mentioned
that the LDPC-CC is a potential solution in physical layer to
realize the real-time applications. In Ref. [14], a short-length
semi-LDPC-CC with the low-latency decoding algorithm was
presented for these real-time applications.

In this paper, inspired by Ref. [14], we present a new con-
struction of the semi-LDPC-CCs. Distinguished from the
conventional LDPC-CCs, the parity-check matrices of semi-
LDPC-CCs contain dense sub-matrices. Because of this spe-
cial structure, we present sliding-window list (SWL) decod-
ing algorithms, which integrate the ideas of list decoding[15,16]

and the conventional SW decoding[9,11]. The SWL algorithm
has a fixed window size of two or three and hence results in a
low decoding latency. Distinguished from Ref. [14], we have
made the following new contributions in this paper.
• As for construction, we present to use the progressive-

edge-growth (PEG) algorithm[17] to construct the sparse sub-
matrices with a systematic structure.
• As for decoding, we present the low-complexity re-

encoding list decoding algorithm, which is embedded in the
windowed decoding algorithm.
• As for performance analysis, we present upper and

genie-aided (GA) lower bounds. The upper bounds are de-
rived from the performance of the first sub-frame, while the
GA lower bounds are estimated from the performance of the
underlying LDPC-BCs.
• To reduce the complexity, we present a serial implemen-

tation with early stopping criterion for the proposed SWL de-
coding algorithms.
• Numerical results show that semi-LDPC-CCs with the

SWL decoding algorithm can yield an extra coding gain of up
to 1.4 dB over the conventional LDPC-CCs with the SW de-
coding algorithm under the same decoding latency. Numerical
results also exhibit the effectiveness of the serial implementa-
tion and validate our analysis of the performance bounds.

The rest of this paper is organized as follows. In section II,
we present the algebraic description and the encoding algo-
rithm of semi-LDPC-CCs. In section III, we present the de-
coding algorithms, the performance bounds, the serial imple-
mentation, and the complexity analysis. Numerical results are
presented in section IV. Section V concludes this paper.

II. SEMI-LDPC CONVOLUTIONAL CODES

A. Preliminaries
In this paper, we use an upper-case letter, say X , to denote a

random variable. The realization of the random variable is de-
noted by the corresponding lower-case letter x ∈X . We use

PX (x),x ∈X (or simply P(x)) to denote the probability den-
sity function (PDF) of a continuous random variable or the
probability mass function (PMF) of a discrete random vari-
able.

Let F2 = {0,1} be the binary field. Let u = (u(0),u(1),

· · · ,u(L−1)) be L blocks of information sequences to be trans-
mitted, where u(t) = (u(t)0 ,u(t)1 , · · · ,u(t)k−1) ∈ Fk

2 for 0 6 t 6
L−1. At time slot t, the encoder takes as input the information
sequence u(t) and delivers as output the coded sequence c(t) ∈
Fn

2. Assume that c(t) is modulated and transmitted over the
additive white Gaussian noise (AWGN) channels, resulting in
a received vector y(t). Because of the windowed decoding
mechanism with window size d, the decoder delivers an esti-
mation û(t) of u(t) upon receiving (y(t),y(t+1), · · · ,y(t+d−1)).

B. Algebraic Description of Semi-LDPC-CCs
A terminated semi-LDPC-CC with encoding memory m =

1 can be treated as a linear block code with dimension kL and
length n(L+1), whose parity-check matrix is a banded block
matrix,

Hsemi-LDPC-CC =



H0

R H0

R H0
. . . . . .

R H0


,

where H0 is a sparse matrix of size (n− k)× n and R is a
dense matrix of size (n− k)× n. For the sparse sub-matrix,
to simplify the encoding process, we consider in this paper
only the form ofH0 = [P ,I]. By optimization with computer
search, the row weight of P is wr = 2 and column weight
of P is wc = 2 in this paper. This sparse sub-matrix can be
constructed by the PEG algorithm[17]. The main difference
from the conventional LDPC-CCs lies in the dense sub-matrix
R, which can be randomly generated (but fixed) by sampling
from a Bernoulli process with success probability 1/2. By
this construction, roughly one-half elements of the dense sub-
matrixR are nonzero.

C. Encoding Algorithm

Given u = (u(0),u(1), · · · ,u(L−1)) with u(t) = (u(t)0 ,u(t)1 ,

· · · ,u(t)k−1) ∈ Fk
2, at time slot t, the encoder takes as input the

information sequence u(t) and delivers as output the coded se-
quence of the form c(t) = (u(t),v(t)) ∈ Fn

2, where v(t) ∈ Fn−k
2

denotes the parity-check bits.
Similar to Ref. [18], the encoding structure of a semi-

LDPC-CC with m = 1 is shown in Fig. 1, in which the register
D of length n is initialized to 0. Given the information se-
quences u as the input, the encoding algorithm has the same
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Algorithm 1 Encoding of the semi-LDPC-CCs

1. Initialization: Set c(−1) = 0 ∈ Fn
2.

2. Recursion: For t = 0, 1, · · · , L−1,

(a) Compute z(t) = u(t)P T ∈ Fn−k
2 , where P is the sub-matrix of

H0 = [P ,I].

(b) Compute s(t−1) = c(t−1)RT ∈ Fn−k
2 , where R is the dense ma-

trix.
(c) Compute v(t) = z(t) + s(t−1) ∈ Fn−k

2 , resulting in c(t) =

(u(t),v(t)) ∈ Fn
2, which is taken as the tth sub-frame of trans-

mission.

3. Termination: Set u(L) = 0 ∈ Fk
2 in Step Recursion to obtain the Lth

sub-frame c(L) = (0, c(L−1)RT) ∈ Fn
2 for transmission.

u
(t)

c
(t)

c
(t−1)s

(t−1)

+

z
(t)

v
(t)

P

R                        D

P/S

Fig. 1 Encoding structure of a semi-LDPC-CC with m = 1. Here, P is the
sparse matrix,R is the dense matrix andD is the register. The tth sub-frame
is c(t) = (u(t),v(t)), where u(t) is the input information bits at time slot t and
v(t) is the parity-check bits calculated by v(t) = u(t)P T +c(t−1)RT

framework as Ref. [14] and is described in Algorithm 1 for
completeness, see Fig. 1 for illustration.

The real code rate1 of the semi-LDPC-CCs with m = 1 is
kL

n(L+1) ≈ k/n for large L. Similar to conventional LDPC-CCs,
semi-LDPC-CCs also inherit streaming properties. That is,
the encoding can be executed in a streaming manner without
waiting for the whole block of data, while the decoding can
be implemented by a sliding-window algorithm. The trade-off
between the performance and the latency can be achieved by
tuning the window size d, corresponding to a decoding latency
dn in terms of bits.

III. DECODING ALGORITHMS
AND PERFORMANCE ANALYSIS

A. Sliding-Window List Decoding Algorithms
For simplicity, we assume that c(t) ∈ Fn

2 is modulated us-
ing binary phase-shift keying (BPSK) signaling and transmit-
ted over an AWGN channel, resulting in a received vector
y(t) ∈ Rn at the receiver. Owing to the existence of the dense
sub-matrix, the conventional SW decoding algorithm is not
applicable here. Instead, we propose the SWL decoding al-

1The code length can be reduced to n(L+1)− k by the simple termination
process. Nevertheless, we will treat the code length as n(L+1) for notational
convenience in the rest of this paper.

gorithms for the semi-LDPC-CCs, in which the list decod-
ing algorithms are performed after a BP decoding algorithm
performed over the partial Tanner graph corresponding to the
sparse sub-matrix. The decoding window size is fixed to two
or three to achieve a low-latency decoding. In this subsec-
tion, we focus on the SWL with window size of two for sim-
plicity. That is, for each time slot t, we recover u(t) from
(y(t),y(t+1)). The details are presented as follows and can be
adapted to the window size of three.

1) BP Decoding: The log-likelihood ratios (LLRs) Λ(t)

associated with c(t) are defined as

Λ
(t)
i = ln

PY |C(y
(t)
i |0)

PY |C(y
(t)
i |1)

, for 0 6 i 6 n−1. (1)

Taking Λ(t) as input, if c(t−1) is known, we can perform an
iterative BP algorithm over a partial Tanner graph specified
by the constraint as

c(t)HT
0 = c(t−1)RT, (2)

to obtain a temporary estimate ĉ(t) and the a posteriori LLRs
associated with c(t). This is almost the same as the iterative
BP algorithm, i.e., sum-product algorithm (SPA) of a conven-
tional LDPC-BC except that the constraint is given by (2) in-
stead of c(t)HT

0 = 0. In practice, c(t−1) of (2) is replaced by
its estimate ĉ(t−1).

2) List Decoding: Given ĉ(t) and the a posteriori LLRs
associated with c(t), a list of candidate codewords for c(t),
denoted as ĉ(t,`)(1 6 ` 6 `max) can be obtained, where `max

denotes the maximum list size. In this paper, we consider
two different list decoding algorithms with different complex-
ities. The first one is the re-encoding list (REL) algorithm,
in which the temporary estimated information bits of ĉ(t) are
flipped and then re-encoded to generate candidate codewords
ĉ(t,`) such that ĉ(t,`)HT

0 = ĉ(t−1)RT, 1 6 ` 6 `max. The sec-
ond one is the ordered re-encoding list (OREL) algorithm, in
which the temporary estimated coded bits ĉ(t) are ordered ac-
cording to their a posteriori LLRs and the most reliable ba-
sis (MRB) that contains k most reliable and linearly indepen-
dent bits is formed. By flipping the ordered bits in the MRB
and re-encoding using the flipped MRB, we can also gener-
ate candidate codewords ĉ(t,`) such that ĉ(t,`)HT

0 = ĉ(t−1)RT,
1 6 ` 6 `max. As observed from our simulations, given the
maximum list size `max, the order of list matters. Hence, we
consider the flipping pattern tree (FPT) algorithm[19], which
arranges the flipping patterns with an ordered rooted tree ac-
cording to their soft weights. The FPT algorithm is embedded
in the flipping procedure of both the REL algorithm and the
OREL algorithm, resulting in the FPT-REL algorithm and the
FPT-OREL2 algorithm, respectively.

2The FPT-OREL algorithm is similar to the ordered statistics decod-
ing (OSD) algorithm except that the flipping patterns are ordered by their
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Algorithm 2 Sliding-window list decoding of the semi-LDPC-CCs

1. Initialization: Set ĉ(−1) = 0 ∈ Fn
2. Suppose that y(0) has been re-

ceived. Calculate LLRsΛ(0) according to (1).
2. Sliding-window decoding: For t = 0, 1, · · · , L− 1, after receiving
y(t+1) and obtaining the estimate ĉ(t−1) of the (t−1)th sub-frame, do
the following steps.

(a) BP decoding for ĉ(t): GivenΛ(t) and ĉ(t−1), the temporary esti-
mate ĉ(t) and the a posteriori LLRs are obtained by performing
the iterative BP algorithm.

(b) List decoding: Given their a posteriori LLRs, ĉ(t−1) and the tem-
porary estimate ĉ(t), a list of candidate codewords ĉ(t,`)(1 6 `6
`max) can be generated by performing the FPT-REL algorithm
or the FPT-OREL algorithm.

(c) BP decoding for ĉ(t+1,`): Calculate LLR Λ(t+1) similar to (1).
Given Λ(t+1) and each ĉ(t,`), the corresponding estimate of the
(t +1)th sub-frame can be determined as ĉ(t+1,`) by performing
the iterative BP algorithm under the constraint of (3).

(d) Decision: Select a candidate ĉ(t,`) that maximizes ΓSWL(ĉ
(t,`))

as (4) from the list of candidate codewords and output the corre-
sponding û(t).

3) Metrics Calculation: Given the list of candidate code-
words ĉ(t,`)(1 6 `6 `max), we present two different soft met-
rics, both of which are likelihood metric to choose the output
from the list. Different soft metrics lead to different decod-
ing algorithms. These decoding algorithms can work because
of the effectiveness of the likelihood metric in the list decod-
ing. The first soft metric is calculated from (ĉ(t,`), ĉ(t+1,`)),
where ĉ(t+1,`) is the output from the BP decoder with the con-
straint as

ĉ(t+1,`)HT
0 = ĉ(t,`)RT. (3)

The soft metric of each candidate codeword ĉ(t,`) can be cal-
culated as

ΓSWL(ĉ
(t,`)) =

n−1

∑
i=0

(−1)ĉ(t,`)i Λ
(t)
i +

n−1

∑
i=0

(−1)ĉ(t+1,`)
i Λ

(t+1)
i , (4)

where Λ
(t+1)
i denotes the LLR associated with c(t+1)

i and can
be calculated similar to (1). The first soft metric ΓSWL(ĉ

(t,`))

is a likelihood metric and the candidate codeword ĉ(t,`) that
maximizes this soft metric will be selected as the decoded
codeword. Using the soft metric as (4), the SWL decoding
algorithm is described in Algorithm 2.

With the soft metric ΓSWL(ĉ
(t,`)), we need to perform the

BP decoder for each given ĉ(t,`) to obtain the corresponding
ĉ(t+1,`), as described in Algorithm 2. In order to reduce the
decoding complexity, we present a simplified soft metric. Un-
der the constraint as

c(t+1)HT
0 = c(t)RT = s(t), (5)

the LLRs λ(t) associated with the syndrome bits s(t) can be

a posteriori LLRs, which is crucial in the case of the limited list size.

Algorithm 3 Simplified sliding-window list decoding of the semi-LDPC-
CCs

1. Initialization: Set ĉ(−1) = 0 ∈ Fn
2. Suppose that y(0) has been re-

ceived. Calculate LLRΛ(0) according to (1).
2. Sliding-window decoding: For t = 0, 1, · · · , L− 1, after receiving
y(t+1) and obtaining the estimate ĉ(t−1) of the (t−1)th sub-frame, do
the following steps.

(a) BP decoding and list decoding: Perform Step BP decoding for
ĉ(t) and list decoding in Algorithm 2.

(b) LLR calculations: Calculate the LLRs λ(t) associated with the
syndrome bits according to (6).

(c) Decision: Select a candidate ĉ(t,`) that maximizes ΓSSWL(ĉ
(t,`))

as (7) from the list of candidate codewords and output the corre-
sponding û(t).

estimated from c(t+1)HT
0 and Λ(t+1). That is

λ
(t)
i = log

P
S(t)i

(0)

P
S(t)i

(1)
=2 tanh−1

(
∏

j:H0(i, j)=1
tanh

(
1
2

Λ
(t+1)
j

))
,

(6)

for 0 6 i 6 n− k−1, where H0(i, j) is the element at the ith
row and jth column ofH0. The simplified soft metric of each
candidate codeword ĉ(t,`) can be calculated as

ΓSSWL(ĉ
(t,`)) =

n−1

∑
i=0

(−1)ĉ(t,`)i Λ
(t)
i +

n−k−1

∑
i=0

(−1)ŝ(t,`)i λ
(t)
i , (7)

where ŝ(t,`)i is the ith element of ŝ(t,`) = ĉ(t,`)RT. The second
soft metric ΓSSWL(ĉ

(t,`)) is a simplified likelihood metric and
the candidate codeword ĉ(t,`) that maximizes this soft metric
will be selected as the decoded codeword. Using the soft met-
ric as (7), the simplified SWL (SSWL) decoding algorithm is
described in Algorithm 3.

The above SWL and SSWL decoding algorithms are de-
signed with window size of d = 2, which can be extended to
the setup of d = 3. To recover u(t) from (y(t),y(t+1),y(t+2)),
we need generalize the soft metrics by including one more
blocks of LLRs. The details are omitted here.

B. Upper Bound and GA Lower Bound
Denote by f ERt (0 6 t 6 L− 1) the probability that the

decoding result û(t) is not equal to the information sequence
u(t) and by frame error rate (FER) for the probability that the
decoding result û is not equal to u. It has been proved in
Ref. [20] that

f ER0 6 max
t

f ERt 6 FER 6
L−1

∑
t=0

f ERt . (8)

For integrity, we rederive these bounds and present a sim-
ple estimated GA lower bound in this subsection. Similar to
Refs. [20,21], we define

f ER =
1
L

L−1

∑
t=0

f ERt , (9)
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which is used as the performance measure in this paper and
can be evaluated in practice by

f ER =
number of erroneous decoded sub-frames
total number of transmitted sub-frames

. (10)

The event that the decoding result û(0) is not equal to the
transmitted vector u(0) is referred to as the first error event E0.
From definition, we have

f ER0 = Pr{E0}. (11)

Generally, we denote by Et the event that the first error event
occurs at time slot t. That is, Et represents û(i) = u(i) for all
i < t but û(t) 6= u(t). The probability that the first error event
occurs at time t can be bounded by

Pr{Et}6 f ER0, (12)

since with û(t−1) being correct, the performance of the tth
sub-frame will not be worse than that of the first sub-frame.
Therefore, the f ERt can be bounded by

f ERt =
t

∑
i=0

Pr{Ei}Pr{û(t) 6= u(t)|Ei}6

t

∑
i=0

Pr{Ei}6 (t +1) f ER0. (13)

Therefore, the f ER can be upper bounded by

f ER 6
1
L

L−1

∑
t=0

(t +1) f ER0 =
L+1

2
· f ER0. (14)

The above upper bound can also be understood by noticing
that the event Et usually causes catastrophic error propagation.
Typically, in the case when event Et occurs, a random-like
sequence (ĉ(t)−c(t))RT is superimposed onto the syndromes
s(t) due to the existence ofR, which will lead to occurrence of
event {Û (t+1) 6=U (t+1)}. This fact can also be used to derive
an approximated lower bound as described below.

Obviously, the f ER0 can be lower bounded by

f ER0 > f ERGA
0 , (15)

where f ERGA
0 denotes the error performance of the first sub-

frame with a GA decoder that outputs the transmitted u(0)

if it is in the list. In particular, f ERGA
0 can be obtained by

simulating with a GA decoder for the LDPC-BC specified
by the parity-check matrix H0. Given that expected fact of
the catastrophic error propagation, we present the estimated
GA (EGA) lower bound for the semi-LDPC-CCs from the un-
derlying LDPC-BCs. That is,

f ER &
L+1

2
· f ERGA

0 . (16)

Notice that both the upper and the lower bounds can be
evaluated from the performance of the first sub-frame of a
semi-LDPC-CC by simulating only the first decoding window.
This is helpful in constructing good codes by computer search.

C. Serial Implementation
The presented SWL or SSWL decoding algorithm can be

implemented in a serial manner, whereby the complexity can
be reduced by introducing an early stopping criterion. Dif-
ferent from Ref. [22], we use a more efficient early stopping
criterion in this paper. A minimum list size `min is set to guar-
antee the performance, while a maximum list size `max is set
to control the worst-case complexity. The early stopping cri-
terion is designed based on the difference between the maxi-
mum soft metric and second maximum soft metric of the cur-
rent candidate list. The basic rule for setting parameters is
to control the type I error. That is, in the case when the null
hypothesis that the transmitted codeword is not in the list is
true, the rejection (early stopping) probability should be small.
This is illustrated by the following example.

Example 1: Consider the sub-frame with n = 64 and
k = 32. The matrix H0 = [P ,I] is constructed by the PEG
algorithm[17], where the sub-matrix P has a column weight
wc = 2 and a row weight wr = 2. The matrix R is randomly
generated but fixed, where the elements are generated inde-
pendently according to the Bernoulli distribution with success
probability 1/2. We set `max = 529 and SNR = 4 dB for sim-
ulation.

By performing the proposed SSWL decoding with FPT-
OREL algorithm, the rank of the transmitted codeword in the
list can be viewed as a random variable and its PMF can be
approximated by the histograms shown in Fig. 2. We see that,
to guarantee the performance obtained by the original SSWL
decoding, say f ER ≈ 4× 10−3, it is necessary to set a mini-
mum list size `min = 25. After generating `min candidates, we
would like to choose a threshold T such that the probability of
“too-early”3 stopping is small in the case when the transmitted
codeword is not in the list. To this end, we have estimated by
simulation the density distribution of the difference between
the maximum soft metric and second maximum soft metric
conditional on that the transmitted codeword is not in the list
or in the list. The histogram results are shown in Fig. 3, from
which we may choose T = 20, for example, to achieve a prob-
ability less than 0.04 for too-early stopping. With these two
observations, we present the following two-round serial de-
coding implementation.

Let `min be the number of candidate codewords in the first
round and δ be the difference between the maximum soft met-
ric and the second maximum soft metric of ĉ(t,`). Let T be
a preset threshold of the soft metric difference. The serial
implementation for the proposed decoding algorithms is de-
scribed in Algorithm 4.

3The ideal stopping time is the time once when the transmitted codeword is
included in the list, which is obviously impractical. We refer a stopping time
to as a “too-early” stopping time if at which the probability of the transmitted
codeword not in the list is high.
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Algorithm 4 Two-round serial decoding implementation

First round: for `= 1,2, · · · , `min do
Generate ĉ(t,`) using the proposed list decoding algorithms.

Calculation of soft metric difference: Calculate δ , the difference between
the maximum soft metric and second maximum soft metric in the list.
Second round: while δ < T and `6 `max do

`← `+1.
Generate one more candidate codewords, denoted by ĉ(t,`), using the
proposed list decoding algorithms and update δ .

Output: Output the candidate that maximizes the soft metric from
{ĉ(t,1), ĉ(t,2), · · · , ĉ(t,`)}.

D. Complexity Analysis
In this subsection, taking the conventional (dv,dc)-regular

SC-LDPC codes with SW decoding algorithm as the bench-
mark, we analyze the complexity of the semi-LDPC-CCs un-
der the proposed SSWL decoding algorithm.

Firstly, owing to the specific decoding process, the Tanner
graph used in the SSWL decoding algorithm is small (about
half or less) compared with that used in the conventional SW
decoding algorithm with decoding window size d > 2. Sec-
ondly, the degree of the variable nodes is 1 or 2 for the semi-
LDPC-CCs, while as shown in Ref. [23], for (dv,dc)-regular
SC-LDPC codes to have good performance, it is usually re-

quired that dv > 3. According to Ref. [24], in each itera-
tion, the total computational load for a variable-node update
is 2dv + 1 real additions and the total computational load for
a check-node update consists of 3(dc − 2) core operations,
where each core operation can be realized using 4 real addi-
tions, 1 comparison, and 2 corrections. Because of the smaller
Tanner graph and lower degree distribution, the computational
load in each iteration of BP decoder for semi-LDPC-CCs is
lower compared with that of the iterative decoder for conven-
tional SC-LDPC codes. We need to point out that the maxi-
mum iteration number can be small in the proposed decoding
algorithms compared with that in the conventional SW decod-
ing algorithm. Considering the whole SSWL decoding algo-
rithm, the main extra computational load is caused by the FPT-
REL or FPT-OREL algorithm with a preset maximum list size
`max. Given H0 and R, the complexity of the list decoding is
linearly increased with the list size. Indeed, the average list
size can be small in the high SNR region of interest by us-
ing the two-round serial implementation, as confirmed by the
following numerical results.

IV. NUMERICAL RESULTS

In this section, we present numerical results of the semi-
LDPC-CCs. We set the sub-frame with n = 64 and k = 32.
In our simulations, H0 = [P ,I] is constructed by the PEG
algorithm[17], where P has a column weight of wc = 2 and
a row weight of wr = 2. R is a randomly generated but fixed
matrix whose elements are generated independently according
to the Bernoulli distribution with success probability 1/2. In
all examples, the encoder terminates every L= 32 sub-frames.
Codewords c(t) are transmitted with BPSK modulation over
AWGN channels. The SWL, SSWL decoding algorithms and
the two-round serial decoding implementation are employed
for the decoding. The maximum numbers of iteration for the
conventional SC-LDPC codes and the semi-LDPC-CCs are 50
and 5, respectively.

A. Comparison with the SC-LDPC Code
The following example is provided to compare the perfor-

mance of a semi-LDPC-CC and a (3, 6)-regular SC-LDPC
code under the equal decoding latency constraint.

Example 2 [Comparison with the (3, 6)-Regular SC-LDPC
Code]: Consider a semi-LDPC-CC with sub-frame of [n,k] =
[64,32] and L = 32. The SWL and SSWL decoding algo-
rithms with FPT-OREL algorithm are employed for the de-
coding. The decoding window size of the semi-LDPC-CC is
d = 2 and hence the decoding latency is 128 bits. For com-
parison, we choose the (3, 6)-regular SC-LDPC code with an
equal coupling width of one and an equal coupling length
L = 32. The sub-matrices H0 and H1 of the SC-LDPC
code are constructed by lifting the base matrices B0 = [2,1]
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Fig. 4 The fER performance of a semi-LDPC-CC with a real code rate of
about 0.4848 and a (3, 6)-regular SC-LDPC code with a real code rate of
about 0.4844. The FPT-OREL and FPT-REL algorithms are used in the SWL
and SSWL decoding algorithms, respectively: (a) FPT-OREL; (b) FPT-REL

and B1 = [1,2] with a lifting factor of 32, respectively. For
(3, 6)-regular SC-LDPC code, the conventional SW decod-
ing algorithm is employed for decoding, where the decoding
window size is d = 2, resulting in an equal decoding latency
of 128 bits. The f ER performance comparison is shown in
Fig. 4(a), where we observe that the semi-LDPC-CCs under
the proposed decoding algorithm with `max = 33 exhibits 0.5
dB coding gain at f ER = 10−4 over the (3, 6)-regular SC-
LDPC code under the same decoding window size, which ver-
ifies the effectiveness of the list decoding. As the maximum
list size enlarges to `max = 529, the coding gain can increase
up to about 1.2 dB. We also observe that the semi-LDPC-CCs
with the SWL decoding algorithm can outperform the pro-
posed codes with SSWL decoding algorithm.

We have made similar observations for the SWL and SSWL
decoding algorithms with FPT-REL algorithm as shown in
Fig. 4(b). Under the simpler FPT-REL algorithm, the cod-
ing gain can increase up to about 1.4 dB as the maximum list
size enlarges to `max = 5489.
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Fig. 5 The fER performance and the corresponding bounds of the semi-
LDPC-CC under SSWL decoding algorithm with FPT-OREL and FPT-REL
algorithms: (a) SSWL with FPT-OREL, `max = 100; (b) SSWL with FPT-
REL, `max = 529

B. Upper Bound and GA Lower Bound

In this subsection, we present the performance of the semi-
LDPC-CCs using the proposed decoding algorithms with dif-
ferent window sizes and the corresponding upper and GA
lower bounds.

Example 3 (Performance and Bounds): Consider the semi-
LDPC-CC that was used in Example 2. The SSWL decoding
algorithm with FPT-OREL and FPT-REL algorithms is em-
ployed for the decoding, where the decoding window sizes
are d = 2 and 3, respectively. The fER performance curve
of the semi-LDPC-CC under the SSWL decoding algorithm
with FPT-OREL algorithm is depicted in Fig. 5(a). From the
figure, we see that the performance of the semi-LDPC-CCs
using SSWL decoding algorithm with d = 2 is very close to
the upper bound in the high SNR region. We also observe that
the performance can be further improved to approach the EGA
lower bound by increasing the window size of d = 3. We have
made similar observations for the SSWL decoding algorithm
with FPT-REL algorithm as shown in Fig. 5(b).
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Fig. 6 The fER performance and the average list size of the semi-LDPC-CC
under SSWL decoding algorithm with FPT-OREL and FPT-REL algorithms.
The maximum list size is `max = 529: (a) the fER performance; (b) the aver-
age list size

C. Serial Implementation of the Proposed Decoding Al-
gorithms

The following example is provided to show the two-round
serial implementation of the proposed decoding algorithms.

Example 4 (Two-Round Decoding): Consider the semi-
LDPC-CC that was used in Example 2. The two-round se-
rial implementation of the SSWL decoding algorithm with
FPT-OREL and FPT-REL is employed for the decoding. The
fER performance is shown in Fig. 6(a), where we observe that
the performance of the two-round serial SSWL decoding with
proper parameter is very close to that of the original SSWL de-
coding algorithm. The average list size comparison is shown
in Fig. 6(b), where we observe that at the cost of negligible
performance loss, the average list size can be significantly

reduced by using the two-round serial SSWL decoding with
properly selected parameters. For example, at SNR = 4 dB,
the average list size can be reduced more than 10 times.

V. CONCLUSIONS

This paper has presented a new construction of LDPC-CCs,
whose parity-check matrix contain dense sub-matrices. Based
on this special construction, we proposed the SWL and SSWL
decoding algorithms with a small window size, resulting in a
low decoding latency but a competitive error-correcting per-
formance. For performance analysis, we have presented the
upper and GA lower bounds to predict the performance of
the semi-LDPC-CCs. Moreover, we have presented the two-
round serial implementation of the proposed decoding algo-
rithms for the purpose of reducing complexity. Our numeri-
cal results have shown that the semi-LDPC-CCs can obtain a
coding gain of up to 1.4 dB over the conventional SC-LDPC
codes. They have also shown that the effectiveness of the two-
round serial implementation and these performance bounds.

The proposed semi-LDPC-CCs are constructed for the po-
tential streaming applications, especially in which the latency
and reliability are both the key performance indicators. In the
construction, a randomly generated but fixed dense sub-matrix
is involved, which is not convenient for practical implementa-
tions. As a future work, we need to find ways to jointly opti-
mize the sparse and the dense sub-matrices with structures.
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